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Abstract—In recent years, machine learning methods have taken a
firm place in society and their use continues to grow. The challenge
here is their little to almost non-existent interpretability. The aim of this
paper is to uncover the possibilities of interpreting machine learning. The
novel mechanisms and procedures of the emerging field of interpretable
machine learning are presented. In a two-part analysis, intrinsically
interpretable machine learning methods and established post-hoc inter-
pretation methods are examined in more detail. The focus is on their
functionality, properties and boundary conditions. Finally, a use case
will be used as an example to demonstrate how post-hoc interpretation
methods can contribute to the explainability of an image classifier and
systematically provide new insights into a model.

Index Terms—interpretable machine learning, interpretability, traceabil-
ity, post-hoc interpretation methods, intrinsically interpretable machine
learning

1 INTRODUCTION

The use of machine learning methods has grown
significantly over the last two decades and has thus
taken a firm place in society. Reasons for this are among
other things the successes of Google with AlphaGo,
IBM with Watson or Amazon with its language assistant
Alexa. These successes motivate many companies and
organizations to use machine learning methods along their
value chain. Business enterprises see a large potential
in mechanical learning drives regarding their suitability
for automation and data-controlled decision making.
The applications are versatile and range from individual
product recommendations to the detection of credit card
fraud and the decision as to whether a patient should be
discharged from hospital.

The increasing speed of innovation of the AI as well
as the competition in the economy require the use of more
precise models. For this reason, analysts and data scientists
are developing increasingly complex machine learning
models to meet the demands of the market. With increasing
complexity, the interpretability of these models becomes
more difficult. The interpretability of the models and their
results, however, plays a decisive role for their acceptance,

documentation and compliance with legal regulations.
Therefore, from a legal, commercial and sociological point
of view, it is of great importance to develop interpretable,
fair and reliable machine learning models. Trust in AI and
thus in machine learning can only be established through
interpretable models and modelling results.

With this motivation, the mechanisms and procedures of
the emerging field of ”interpretable machine learning” are
presented in this paper. First, the necessity of interpretability
from a commercial, legal and sociological point of view is
explained. The methodology and evaluation of interpretable
machine learning will then be defined. Subsequently, the
approaches of interpretable machine learning will be
examined in more detail. It will be examined whether
and to what extent these allow an interpretation and
comprehension of the decision-making process of machine
learning. In the case of interpretable machine learning,
a distinction is made between intrinsic and post-hoc
interpretability. Therefore, it is necessary in the analysis to
consider these sub-areas separately from each other.

Intrinsically interpretable machine learning procedures
are inherent in the system, i.e. due to their internal
structure they are considered transparent by nature. In the
first part of the analysis, the most common intrinsically
interpretable machine learning procedures are explained
and examined with a focus on their interpretability. In
the second part of the analysis, established post-hoc
interpretation methods are presented and analyzed with
regard to their functionality, properties and boundary
conditions. Finally, their applicability is demonstrated by
means of a hypothetical use case.

2 MACHINE LEARNING INTERPRETABILITY

In the context of machine learning, there is no clear
definition of interpretability. Doshi-Velez and Kim [2]
define interpretability as the ability to present and explain
machine learning models and modelling results for a
human being in an understandable way [2]. Interpretibility
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is also referred to as the point at which a person can
understand the cause of a decision or prediction [3]. The
higher the interpretability of a machine learning model,
the easier it will be for humans to understand the cause of
certain decisions or predictions [4].

The novel approach of interpretable machine learning
provides methods and procedures with which the
functionality of machine learning models can be
understood. Lipton [5] provides a taxonomy for the
methods of interpretable machine learning. This elaboration
is based on Lipton’s view and uses the terms interpretability
and explainability synonymously. Furthermore, according
to Lipton [5] it is considered reasonable to distinguish
between interpretability/explainability and explanation.
As in the publications of Doshi-Velez and Kim [2], Miller
[3] and Molnar [4], the term ”explanation” is regarded as
the result of the procedures for post-hoc interpretability.
A detailed explanation of the taxonomy can be found in
section 2.1.

2.1 Taxonomy of interpretability
Methods of interpretable machine learning are basically
divided into two categories: intrinsic and post-hoc inter-
pretability.

2.1.1 Intrinsic and post-hoc Interpretability
The first category, intrinsic interpretability, refers to machine
learning methods that are considered interpretable due
to their simple structure and low algorithmic complexity
[5]. These are often referred to as white-boxes. Section 3 is
focussed on the most common intrinsically interpretable
models.

Post-hoc interpretability includes procedures that can
be applied to more complex machine learning models
to make them as explainable as possible. As the name
suggests, post-hoc interpretation methods are applied after
model training. Post-hoc interpretation methods are usually
used to explain non-intrinsically interpretable models [5].
Non-intrinsically interpretable machine learning techniques
include artificial neural networks, random forests, and non-
linear support vector machines. When applying a post-hoc
approach, the further procedure depends on which learning
algorithm is to be analyzed. The next sections 2.1.2 and 2.1.3
explain the further procedure for the realization of post-hoc
explanations.

2.1.2 Model-specific and model-agnostic interpretability
The choice of the appropriate post-hoc interpretation
method depends on the machine learning method to be
analyzed. Model-specific interpretation methods exist for
certain machine learning methods. For example, DeepLIFT
is a model-specific interpretation method intended for use
on artificial neural networks. Chapter 4.2 explains and
examines the most common methods for model-specific
interpretation.

If there is no model-specific possibility to interpret
certain learning algorithms, a model-agnostic procedure

can be used. Model-agnostic interpretation methods can be
applied to a number of different learning algorithms and
represent the majority of available interpretation methods
[7]. Examples are presented in chapter 4.1.

2.1.3 Global and local interpretability
The analysis of a machine learning model with regard
to its interpretability requires a distinction between
global and local considerations. Interpretations from a
global perspective can help to understand the overall
behavior of the model as well as the relations between
the input parameters and its model predictions. In local
interpretation, however, only the predictions of individual
or a group of similar data points are explained [7].

For the best possible explanation of a machine learning
model, it may be useful to combine the results of global and
local methods of interpretation [4].

2.2 Need of interpretability

The ability to explain to others the reasons for their
decisions is an important aspect of human intelligence. In
addition, the explanation of one’s own decisions is often
a prerequisite for building a relationship of trust between
people. Such social aspects may be of little importance for
machine learning systems, but there are enough arguments
for interpretability in machine learning [8].

So-called black box models, whose decisions and
predictions are intransparent, cannot necessarily be trusted
[8]. It is often not sufficient to evaluate the performance of a
trained model using a quantitative metric such as accuracy.
Accuracy and other performance measures merely provide
information on how well the trained model generalizes the
learned data or how well it can transfer what it has learned
to new data. Key performance indicators cannot say how
distorted or unbalanced the training data is with respect to
the problem, since a machine learning algorithm only learns
from the data and does not evaluate it with respect to the
problem. In this way, a bias in the training data can often
remain undiscovered [4]. A bias in the training data can be
seen as a discrepancy between the problem and the training
data. Recognizing bias in the machine learning model or
data set becomes easier when you understand how the
model behaves and makes its predictions. Especially with
critical decision support systems, decision makers need to
be able to rely on them and verify the results. Therefore, the
use of methods of interpretable machine learning to verify
the modelling results makes sense [8]. In this way it will
also be possible to identify the weak points of a model and
to optimize it.

Another important argument for interpretability in machine
learning is information extraction. Today’s machine
learning systems are trained with millions of samples and
can observe patterns in data that cannot be captured by
humans. By using interpretable machine learning systems,
new insights can be extracted from machine learning
models [8]. Extracted information and findings can then be
reused.
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The need for interpretable machine learning has become
urgent. With the increasing use of machine learning, legal
aspects, such as the allocation of responsibilities in the
event of wrong decisions, have also received increased
attention. Particularly when using black box models, it may
not be possible to give satisfactory answers to such legal
questions. Individual rights play an important role here.
People who are directly affected by decisions of a machine
learning system will wonder why the system has decided in
a certain way (e.g. when refusing a loan from the bank). For
this reason, machine learning procedures must inevitably
be made more explainable [8]. These concerns prompted the
European Parliament to adapt the General Data Protection
Regulation (GDPR) and to adopt the ”right to explanation”
(Article 22 - GDPR). Article 22 GDPR entered into force in
mid-2018.

2.3 Evaluation of interpretability
Despite an increasing interest in interpretable machine
learning and its necessity, there is no uniform
procedure for the evaluation or evaluation of
interpretability/explainability or explanations according to
the current state of the art. In contrast to a performance
indicator such as accuracy, the interpretability of a machine
learning model or its results can often be difficult to
measure quantitatively [2].

Doshi-Velez and Kim name three ways to evaluate machine
learning models and their decisions and predictions in
terms of their interpretability. The first two evaluation
possibilities follow a human-based approach with partly
high domain knowledge. However, this is a scarce and
expensive resource that often does not exist. For this
reason, this paper makes use of the possibility of function-
based evaluation. No people are required to carry out the
evaluation. The evaluation is carried out by the developer
by the use of use cases. This method is normally used
if the model has previously been evaluated by humans
for its interpretability [2]. For example, it is generally
known that linear and logistic regression models as
well as decision trees are more comprehensible than
artificial neural networks [4] [7] [9] [10]. In this case,
qualitative features can be used to evaluate explanations
of post-hoc interpretation methods. The methodology of
the post-hoc procedures and the quality of the generated
explanations are considered on the basis of different criteria.

Criteria for post-hoc interpretation methods have been
established as follows:

• Transparancy: Transparency refers to the degree
to which the interpretation method describes the
functioning of the machine learning model.

• Transferability: Transferability describes to how
many machine learning methods and models the
interpretation method can be applied.

• Complexity: Complexity refers to the implementa-
tion effort of the interpretation method to generate

the explanation.

Generated explanations are considered with regard to the
following properties:

• Plausibility: Plausibility deals with the correctness
of the explanation that the post-hoc interpretation
method generated the machine learning model or
its decision or prediction. For the evaluation of this
criterion, several methods can be applied to a model
and then compared.

• Expressiveness: Expressiveness refers to the
structure of the explanations. Explanations can be
represented by histograms, IF-THEN instructions or
decision paths.

• Stability: Stability considers the similarity of
explanations for similar samples.

• Understandability: Understandability of an explana-
tion often depends on the viewer and is therefore
considered a difficult criterion to measure. For the
evaluation of this criterion, one can, for example,
consider the scope of the explanation or the number
of characteristics depicted in an explanation.

3 INTERPRETABLE MODELS

In the following sections, the most common intrinsically
interpretable machine learning methods are explained. The
focus is on the interpretation of the model parameters
and their mutual influence as well as marginal effects. A
marginal effect is the influence of an explanatory variable x
on a target variable y if the explanatory variable changes by
one unit and the remaining explanatory variables remaining
constant [6].

3.1 Linear Regression

Linear regression can be used to model the relationship be-
tween one or more explanatory variables and a continuous
target variable. Furthermore, linear regression can help to
identify trends in the data set and to make predictions for
continuous values. Depending on the number of explana-
tory variables, a distinction is made between two basic types
of linear regression. In the case of an xxx, it is also called as

In the case of an explanatory variable, we speak of
univariate linear regression. If linear regression is applied
to any number of explanatory variables, it is referred to as
multiple linear regression. In the interpretation, however, no
distinction is made between the two types. The equation of
linear regression is defined for a sample i as follows:

ŷ = β0 +

p∑
j=1

βjxj (1)

The ŷ in equation 1 is the declared target variable or to be
precise the weighted sum of the p explanatory variables.
The constant β0 represents the y-interception. In connection
with machine learning, β0 is also called bias. This means
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that if all weights of the explanatory variables are zero, then
β0 is the average expected value for y. The βj represent
the determined weights of the explanatory variable xj . The
goal is to determine the weights of the linear regression
equation in such a way that they describe the relationship
between the p explanatory variables and the continuous
target variable and thereby minimize the error. In this way,
the value of the target variable can be predicted for other
values of the explanatory variable that were not part of the
training data set.

The property of linearity makes the linear regression
model interpretable. The interpretation of linear regression
depends on the explanatory variables and their weights.
In univariate linear regression, the weight β0 is often
referred to as the y-intercept. In general, regardless of the
number of explanatory variables, β0 is the average expected
value for the target variable if all explanatory variables
are zero. If the explanatory variables will not be zero
under any circumstances, then there is no meaning in the
interpretation of β0 because it does not contain information
about the relationship between the explanatory variables
and the target variable y.

The weight βj of an explanatory variable xj determines its
influence on the model. This means the increase or decrease
of the value of a numerical explanatory variable xj by one
unit, increases or decreases the contribution to the target
variable ŷ by the factor βj . Unlike a numeric explanatory
variable, a categorical explanatory variable has a discrete
number of values. If necessary, it is needed to transform
the values of a categorical explanatory variable, i.e. to
transform the individual categories into a binary format.
For this purpose, a column is created in the data set for
each category, which can assume the values zero or one. It
follows that changing the categorical explanatory variable
variable xj from zero to one, or vice versa, changes the
estimate for ŷ by the weight βj of the explanatory variable.

It should also be noted that the weights of the explanatory
variables in the regression model influence each other.
Therefore, a single weight cannot measure the overall effect
on the model. Rather, each weights represents an additional
effect on the model.

3.2 Logistic Regression
Logistic regression is an extension of linear regression. It is
a linear model that is often used for binary classification
problems. Similar to linear regression, logistic regression
is the sum of explanatory variables. The target variable is
not continuous but categorical. Therefore, logistic regression
regards the result as a logistic function. The explanatory
variables can be both numerical and categorical. Logistic
regression is mathematically defined by the following equa-
tion.

log

(
P (y = 1|xj)
P (y = 0|xj)

)
= β0 +

p∑
j=1

βjxj (2)

Logistic regression estimates the conditional probability of

a given sample belonging to the class y = 1 or y = 0 for
a given explanatory variable xj . The probability for the
occurrence of the event and thus the assignment of a class
is described by the odds ratio. As shown in equation 2,
the odds ratio is the ratio between the probability of the
occurrence of the event y = 1 and its counter-event y = 0.
The odds ratio is logarithmized to compress the output
of the model between zero and one. Mathematically, the
logarithm of the odds ratio can be considered as log( p

1−p ),
also called logit function. The p here, is the probability of
occurrence for the positive event with the label y = 1.

Similar to linear regression, the interpretation depends
on the explanatory variables and their weights. However,
it differs in interpretation because the outputs of a logistic
regression are probabilities in the interval between zero
and one. The weights βj of the explanatory variable xj
determine their influence on the logistic regression model.
Depending on the type of explanatory variable, the logistic
regression model can be interpreted differently. If the value
of a numerical explanatory variable xj is increased by one
unit, the odds ratio ( p

1−p ) changes by the factor exp(βj).

For a binary categorical explanatory variable xj , the
odds ratio changes by the factor exp(βj) if the explanatory
variable takes the value 1. If the explanatory variable
assumes the value zero, this explanatory variable has no
influence.

If all explanatory variables, both numerical and categorical,
are equal to zero, the odds ratio is at least exp(βj).

3.3 Decision Trees

There are several algorithms for training decision trees.
Most learning algorithms are based on the so-called Hunt’s
algorithm [11], such as ID3, C4.5 [12] or CART [13] [14]. In
practice, the CART algorithm (Classification and Regression
Trees) is the most commonly used, since it is also used by
Scikit-Learn by default. Therefore, this section focuses on
the interpretation of the CART algorithm. The interpretation
does not differ much for other algorithms, since they are also
based on the Hunt’s algorithm.

The CART algorithm constructs binary decision trees for
regression and classification problems. The only difference
is the target variable. The explanatory variables that make
up the root node and the inner nodes can be categorical
or numerical. The following equation describes the relation
between the target variable ŷ and the explanatory variables
x.

ŷ =
M∑

m=1

cmI(x ∈ Rm) (3)

The ŷ in equation 3 represents the target variable. If
it is a regression task, the target variable is numeric. For
a classification task, ŷ assumes categorical values. The x
stands for the explanatory variable. Rm represents the
subsets of the feature, where M is the number of subsets.
Each sample is assigned to exactly one subset Rm. The
function I(x ∈ Rm) is the so called identity, which exactly
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returns one argument, 0 or 1. If a sample is an element
of the subset Rm, 1 is returned, otherwise 0. This means
that the target variable ŷ corresponds to the constant cm.
The constant cm corresponds to the average value of the
samples in the training dataset of the subset Rm.

The resulting decision tree is relatively simple to interpret.
Starting from the root node, the sample is assigned to the
next child node depending on the threshold value. As
soon as the sample reached a leaf node, the node can be
interpreted as the result for the target variable ŷ.

The nodes of the decision tree are linked by the boolean
operator ”AND”. Therefore, the resulting decision tree can
be considered as a set of consecutive rules (IF-THEN). In
this way, the decision path for reproducing the prediction
can be identified. Starting from the root node, the decision
path can be used to determine which explanatory variables
influenced the prediction. If the decision tree consists of a
single node or explanatory variable, the target variable will
take its mean as the result.

3.4 k-Nearest-Neighbor
The k-nearest-neighbor algorithm belongs to the family
of supervised machine learning methods and is suitable
for regression and classification tasks. The k-nearest-
neighbor algorithm considers the nearest sample or so
called neighbor of a new sample for its prediction. In a
classification task, the algorithm considers the previously
defined k nearest neighbors and their classes. The most
common class is assigned to the new sample. In case the
majority decision is undecided, the algorithm prefers the
label of the next sample with the smallest distance. If the
distances of the samples in the neighborhood are the same,
the label that appears first in the training data is selected.

For regression problems, the average value of the target
variable ŷ of the nearest neighbors is used. The following
equation describes the relationship between the target ŷ
variable and the explanatory x variables.

ŷ(x) =
1

k

∑
xi∈Nk(x)

yi (4)

The term Nk(x) is the neighborhood of a sample defined
by the k closest points xi in the training samples. The k
next samples are determined by a distance measure, such
as the Euclidean distance, to form the neighborhood.

The interpretation of the k-nearest-neighbor algorithm
differs from the previous learning algorithms because it is
an instance-based learning algorithm. This means that there
are no parameters or weights that can be learned during a
training process. This property of the k-nearest-neighbor
algorithm allows interpretation only at the local level,
since there are no explicitly learned global parameters or
weights. From a local point of view, individual predictions
of the k-nearest-neighbor algorithm can be explained by
considering the hyper parameter k. The interpretability of
the model depends on the interpretability of the individual
sample in the data set. The dimension of the sample to be

interpreted plays an important role. If a sample consists of
several hundreds or thousands of explanatory variables,
interpretation is not possible. If there is a manageable
number of explanatory variables or the dimension can be
reduced to the most important features, good explanations
can be obtained from the k-nearest-neighbor algorithm.

3.5 Naive Bayes classifier

Another intrinsically interpretable learning algorithm is
the Naive Bayes classifier. The Naive Bayes classifier is a
probabilistic learning algorithm that belongs to the family
of supervised learning methods. It is designed to solve
classification problems.

The Naive Bayes classifier is based on the Bayes theorem.
The Bayes theorem makes it possible to determine
the probability P (y|x1, x2, ..., xp) of a sample’s class y
affiliation using the given p explanatory variables of a
sample. The Naive Bayes classifier is based on the strong
(= naive) assumption of conditional independence. This
means that the naive classifier assumes that the effect of
an explanatory variable xj on a given target variable or
class is conditionally independent of the values of other
explanatory variables. This makes it possible to estimate the
conditional probability for each explanatory variable for a
given class y. For the classification of an unknown sample
i from the test data set, the Naive Bayes classifier generates
the conditional probability for each class y:

P (y|X) =

P (y)
p∏

j=1
P (xj |y)

P (X)

X = (x1, x2, ..., xp)

(5)

The interpretability of the Naive Bayes classifier is
given by the assumption of conditional independence.
The assumption of conditional independence allows
the conditional probabilities to be calculated for each
explanatory variable, which allows their contribution to a
particular class to be determined.

Another way of determining the contribution of individual
explanatory variables is to determine their information
gain. According to Kononenko, the Information Gain (IG)
can help to determine which of the explanatory variables
is most useful for classification [15]. The value of the
information content is calculated as:

IG(xj |y) = log2P (y|xj)− log2P (y) (6)

4 POST-HOC INTERPRETATION METHODS

This section is devoted to the analysis of post-hoc interpre-
tation methods, aimed at ensuring the global and local inter-
pretability of black box models. The post-hoc interpretation
methods are examined with regard to their functionality,
properties and boundary conditions. In addition, these are
evaluated and categorized according to their application
spectrum.
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4.1 Model-agnostic interpretation methods

Model-agnostic post-hoc interpretation methods are not
limited to a specific learning algorithm. They are able to
generate explanations for a number of complex learning
algorithms. In the following sections, the most common and
most cited post-hoc model-agnostic interpretation methods
are listed.

4.1.1 Partial Dependence
Partial Dependence (PD) describes the average marginal effect
of one or more explanatory variables on the prediction of
a machine learning model. This property characterizes this
method as a global interpretation method that is applied
after model training.

The graphical visualization of the dependencies between
the explanatory variables and the model prediction
is called Partial Dependence Plot (PDP). A Partial
Dependence Plot visualizes whether the relationship
between the model prediction and an explanatory variable
is linear, monotonous, or complex. For example, a Partial
Dependence Plot will always show a linear relation when
applied to a linear regression model [4].

Partial Dependence plots can be used to interpret different
black box models such as neural networks, non-linear
support vector machines or complex random forest models
[14]. However, the application is limited to the procedures
of monitored machine learning. Furthermore, Partial
Dependence plots are limited to the visualization of a
maximum of two explanatory variables, since higher
dimensional correlations are difficult to capture [16].

The advantage of Partial Dependence Plots is their
simplicity of implementation. The Python library for
machine learning, Scikit-Learn, offers the possibility
to generate Partial Dependence Plots via the module
sklearn.inspections with only few parameters.

4.1.2 Global Surrogate Modeling
Global Surrogate Modeling is considered the simplest method
to explain and interpret non-intrinsically interpretable
models, such as neural networks or support vector
machines. A surrogate is the replacement of an object.
In this case the replacement of a black box model by an
interpretable model.

A Global Surrogate Model is an intrinsically interpretable
model that is trained to approximate a non-intrinsically
interpretable model and thus its predictions [4]. Therefore,
this approach is also known as Behavioral Modeling [29].

The aim of a surrogate model is to approximate
the underlying black box model as accurately and
simultaneously as possible. In this way, new insights can
be gained about the black box model. The prerequisite
for this is the intrinsic interpretability of the surrogate
model. This can be any intrinsically interpretable machine
learning procedure listed in section 3. Linear regression
models or decision trees are frequently used surrogate

models. The concept is model-agnostic because it does not
require any information about the black box model to be
approximated and its structure. Only the training data of
the black box model are required [4]. If necessary, a subset
of the original training data set can also be used. After
training the surrogate model, its quality can be measured
by the coefficient of determination R2. The coefficient
of determination R2 indicates the variance between the
predictions of the surrogate model and the black box
model. In this way it can be ensured whether the trained
surrogate model represents a good approximation of the
black box model [4]. Equation 7 represents the coefficient of
determination.

R2 = 1−

n∑
i=1

(ŷ∗i − ŷi)
2

n∑
i=1

(
ŷi − ¯̂yi

)2 (7)

The ŷ∗i represents the prediction of the surrogate model for a
sample i. A prediction of the black box model for a sample i
is represented by ŷi. The mean of the predictions of the black
box model is represented by ¯̂yi. The result of the coefficient
of determination R2 can also be interpreted as a percentage
of the variance. If R2 is close to 1, the black box model is
well approximated by the surrogate model by the surrogate
model. This means that the black box model can be replaced
by the surrogate model and used for global interpretation.
The surrogate model cannot represent the black box model
well if R2 is close to 0 [4].

4.1.3 LIME
Local Interpretable Model-agnostic Explanations (LIME) is a
model-agnostic approach for generating local explanations.
The LIME library is available in both Python and R. There
is no possibility to interpret the global model behavior with
LIME. It can provide explanations for the predictions of
classifiers or regression analyses. The basic idea of LIME for
generating explanations is relatively simple and intuitive.
Explanations are generated by locally approximating the
underlying black box model by linear regression [19].

First, a series of similar data is generated for the sample to
be explained. This creates a new data set whose column
values are based on those of the original sample. With
this new data set, predictions are again made based on
the original black box model. The goal is to observe how
the predictions or predicted values change when different
values are used for the explanatory variables of the sample
to be explained. A linear regression model is formed from
the samples that have a similar result to the original sample.
The more similar the result of a sample is, the higher its
explanatory variables are weighted when training the linear
regression model. The weights of the linear regression
model are learned using the least squares method. The
weights learned by the linear regression model for each
explanatory variable represent their contribution to the
prediction of the black box model [19].

According to this basic principle, LIME generates
explanations for individual predictions of a black box
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model. The target variable of the black box model can be
categorical or continuous. Basically, LIME supports three
data structures. It is suitable for tabular data, images and
text data. Depending on the data used, the generation of
representative samples used to train the weighted linear
regression model differs [19].

For classification and regression problems based on tabular
data, the samples to be generated depend on the type of
explanatory variable. For continuous explanatory variables,
LIME generates normal-distributed data based on the mean
and standard deviation of the explanatory variables. For
categorial variables, the frequency of values is considered.
For image files, the generation of representative samples
is different. In the image classification to be explained,
the image is divided into interpretable components, called
superpixels, using the Quickshift segmentation algorithm.
Depending on the number of superpixels in an image, a
data set is formed. The number of superpixels in an image
determines the dimension of the data set to be generated.
Each column of the data set represents one superpixel
from the image to be explained. The columns are binary
explanatory variables. If an explanatory variable of the
sample assumes the value 0, the superpixel represented
by this explanatory variable is hidden. Conversely, a 1
means the insertion of a superpixel. Subsequently, the class
probability of the generated image samples is calculated.
Then the process is repeated to form a linear regression
model [19].

The LIME algorithm behaves similarly to images when
generating explanations for text classifications. It tries to
determine which words in the text are the motives for
the specific class assignment. Based on the original text
sample, LIME generates similar samples by fading in and
out different words [19].

The higher the number of data to be generated, the more
accurate and reliable the explanation for interpretation
will be. However, a high number of samples requires
more resources, since for each of the generated samples a
prediction is made by the black box model [19].

4.1.4 Shapley Values
The Shapley Value is an approach from cooperative game
theory and is based on the analogy of machine learning
models and games. Cooperative game theory is a subfield
of mathematical game theory. Cooperative game theory
assumes that a group of players, also called a coalition,
are the primary decision units and enforce cooperative
behaviour. This means that cooperative games can be
seen as competition between coalitions of players and not
between individual players. Based on their contribution,
each player in the coalition receives a certain share of the
profits from this cooperation. Shapley values can be used to
determine the contribution each player in a coalition makes
to the result.

By analogy, it is assumed that each explanatory variable
of a sample is a player in a game. The game is the
determination of the model prediction for a sample. This

can be a classification problem or a regression problem.
Thus, the result of the game is the model prediction.
Shapley values can be used to determine the contribution of
each feature to the predicted model result. Shapley values
are the average contributions the explanatory variables
have to the model result. To form the average contribution,
all coalition possibilities are considered. That is, for the
generation of the Shapley values, the model prediction
of a sample is permuted by all possible values of the
explanatory variables. Therefore, Shapley values are very
computationally intensive. For this reason, the complete
data set is usually not used for permutation, but only a
subset [4].

The interpretation of the Shapley values is based on the
average model prediction. The average model prediction
is calculated by passing the data set or a specific subset
of it. The Shapley Value indicates how the value of an
explanatory variable affects the average model prediction.
The higher the Shapley value, the greater the contribution
of the explanatory variable of the sample to the model
prediction. However, Shapley values can also be negative.
This means that Shapley values can determine both the
positive and negative effects of the explanatory variables
on the model result [20].

Inspired by game theory and based on Shapley values, a
framework for generating explanations called SHAP has
been developed. SHAP (Shapley Additive Explanations)
offers a local interpretation possibility for various machine
learning models. The SHAP framework is suitable for
generating visual explanations for classification and
regression problems [20].

4.2 Model-specific interpretation methods

The following sections explain model-specific interpretation
methods that have gained importance in the field of inter-
pretable machine learning.

4.2.1 DeepLIFT
Deep Learning Important Features, also known as DeepLIFT,
is a model-specific post-hoc interpretation method that
specifically addresses the local explainability of deep
learning algorithms. DeepLIFT tries to find out which
input parameters were decisive for the model prediction.
To achieve this, DeepLIFT uses the layer architecture
and backpropagation mechanism of the neural network.
DeepLIFT decomposes the model output of the neural
network to certain input parameters. The backpropagation
mechanism determines the contributions of individual
neurons of the neural network depending on their output.
In this way, it is attempted to draw conclusions as to
which input parameters influenced the model prediction.
DeepLIFT determines the contributions based on the
difference between the activation of a neuron and its
reference activation. The reference activations of all neurons
are determined by propagating the input parameters
forward through the net, also called forward pass. Once
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the reference activation is known, the sample whose
explanation is desired is propagated via the output layer
back to the input layer by the neural net. This process is
also called backward pass. The differences in all neurons
between the reference activation and the current activation
are calculated. Then all effects are summed and mapped to
the input parameters [30].

DeepLIFT is implemented in Python and is available
via GitHub. It is applicable to neural networks of
various architectures based on Keras and Tensorflow
[21]. Furthermore DeepLIFT is integrated in the SHAP
framework under the name Deep SHAP [22]. The SHAP
framework has extended the DeepLIFT algorithm by the
concept of Shapley values.

4.2.2 Class Activation Maps
Convolutional Neural Networks (CNN) and other deep neural
networks have proven themselves in practice and have
enabled numerous breakthroughs in image processing
and object recognition. While these deep neural networks
master complex tasks, they are difficult to interpret due
to their lack of decomposability into comprehensible and
understandable components.

Class Activation Maps (CAM) are a simple technique to
provide visual explanations for image classifications that
allow local interpretation. The basic idea behind CAM
is simple. To identify the areas in the image that were
critical for classification, the contributions of the neurons
are considered. Zhou shows in her publication [24] that
CNN with a Global Average Pooling Layer (GAP) [17],
trained for image classification, can also be used to localize
objects in an image. This means that a CNN with a Global
Average Pooling Layer after the last convolutional layer can
determine the position of the object image in addition to
predicting which object is mapped in an image. The decisive
factor is that the Global Average Pooling Layer is after the
last convolutional layer in the layer architecture. The last
convolutional layer is selected because it contains detailed
spatial information about the objects in the image. The
neurons in these layers search for semantic class-specific
information in the image [23]. In this way, the attempt is
made to mark the pixels in the image that contributed most
to the CNN output.

The feature maps in the last convolutional layer before the
GAP act as a kind of pattern detector. Each node in the GAP
is connected to a feature map from the previous layer. The
weights between the output layer and the GAP determine
the contributions of individual feature maps. The Class
Activation Map is then generated from the weighted sum
of the feature maps. This shows which image areas were
used by the network for classification [26]. Red markings in
the image represent important areas for the classification.
Green areas in the Class Activation Map symbolize less
important areas. On the other hand, blue image areas mark
less important features for the classification of the image.

A major disadvantage of this method is the requirement of
a Global Average Pooling Layer in the architecture of CNN.

Therefore, a new approach was developed based on this
method, which makes the requirement of a Global Average
Pooling Layer superfluous. This new approach uses the
backpropagation mechanism of CNN and propagates the
model prediction back to the last convolutional layer.
Another restriction is that the current implementation is
limited to neural networks based on Keras. However, the
extended version of the Class Activation Maps can be used
for both monitored and encouraging learning [23]. The
implementation is freely accessible via GitHub, under the
name Keras-Vis [23].

4.2.3 Saliency Maps
Saliency Maps are based on the same idea as Class
Activation Maps. They are also a visual explanation method
that is especially used in image processing [25]. In the
context of interpretable machine learning, this approach
is a local model-specific post-hoc interpretation method
specifically for the predictions of a convolutional neural
network. This means that it can only be used to explain
individual images.

This method is derived from the concept of saliency
in images. The term Saliency means conspicuousness in
this context. This refers to unique features, such as pixels
or resolution of the image in the context of the visual
processing of the Convolutional Neural Network. The
goal of Saliency Maps is to identify the characteristics
or areas in an image that were relevant to a particular
prediction [1]. In contrast to Class Activation Maps, color
images are converted into black and white images. This
tries to emphasize the strongest influences in the image.
Saliency Maps can be generated independently from the
architecture of the Convolutional Neural Network. Their
implementation is freely accessible via GitHub under the
name Keras-Vis [25]. This is the same library that also
provides an implementation for Class Activation Maps.

5 USE CASES FOR POST-HOC APPROACHES

In the following sections, selected post-hoc interpretation
methods are prototypically implemented using a hypothet-
ical use case. The aim is to demonstrate the applicability
of post-hoc interpretation methods and thus to generate
explanations. The implementation will be realized on the
basis of the analysis from section 4. The selection of the post-
hoc interpretation methods to be implemented depends on
their suitability for the use cases.

5.1 Interpretability of an image classifier
5.1.1 Use Case
Machine learning models cannot evaluate their training
data with respect to the problem for which they are
intended. Therefore, distortions or bias in the training
data may remain undetected. Machine learning algorithms
record these distortions in the training data [4]. As a result,
models can emerge that generalize the data provided
well, but do not represent the real world sufficiently [19].
Depending on the problem, a bias in the training data can
even lead to systematic discrimination.
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Fig. 1: Approach to identify weaknesses of InveptionV3 using LIME and Class Activation Maps

Many advocates of interpretable machine learning see
post-hoc interpretation methods as a way to discover bias
and weaknesses in machine learning models. Using post-
hoc interpretation methods and their explanations, machine
learning models that are non-intrinsically interpretable are
to be debugged and their deficits identified. In this way,
attempts are made to identify optimization potentials [4]
[19].

In this hypothetical use case this assertion shall be
investigated. The predictions of the Convolutional Neural
Network InceptionV3 [18] for image classification with
regard to their weaknesses will be examined using
the post-hoc interpretation methods LIME and Class
Activation Maps. Both methods support the generation
of local explanations for image classifications and thus
convolutional neural networks, independent of their
architecture.

For the implementation of the use case, images are obtained
from the freely accessible online database ImageNet [28].

The complete documentation of the implementation
is provided on GitHub and can be viewed under the
following reference [27].

5.1.2 Systematic analysis for optimization potentials

It is very computationally and time-consuming to examine
a model by looking at each explanation individually to
make sure that the model has recognized the correct
characteristics in the image. Therefore, a more efficient
approach is needed to discover optimization potentials in a
neural network such as InceptionV3. This section presents
such an approach using LIME and Class Activation Maps.

This approach to the systematic analysis of the InceptionV3
with regard to its optimization potential is based on
bounding boxes. Bounding boxes are rectangles in an
image, which frame the objects to be recognized in an
image. The goal is to systematically ensure whether the
model actually makes its predictions based on the objects
framed in the bounding boxes or whether it concentrates on
other areas in the image and thus has a bias. This means that
if the areas identified by LIME and Class Activation Maps

are not within the bounding box, it may indicate a bias in
the training data of the model. The masks of the bounding
boxes, class activation maps and LIME explanations are
calculated for this purpose. Figure 1 illustrates from left to
right the original image, the LIME explanation, the Class
Activation Map and their overlapping masks. If one looks
at the mask, one sees that in this image classification the
masks of the LIME explanation (purple) and the Class
Activation Map (yellow) lie within the bounding box (red).
This suggests that the image was classified according to the
characteristics that were also framed by the bounding box.
If the masks of the explanations were outside the red area,
this could indicate a bias in the training data of the neural
network.

The InceptionV3 was used to determine the classes for
11100 images from 222 different categories. After each
classification, the principle shown in Figure 1 was applied.
Subsequently, the intersections or number of overlapping
pixels of the masks were determined by comparing the
pixel coordinates. On the basis of the intersection it should
be possible to say what percentage of the LIME explanation
or Class Activation Map lies in the bounding box.

For all 222 predicted classes, the average intersection
in percent per class was determined. The results were
visualized as bar charts and then examined. Figure 2
illustrates a section of the bar charts. Blue columns represent
the accuracy in each class. The average intersection between
the LIME declarations and the bounding boxes is shown in
orange. Green columns visualize the average intersection
between the Class Activation Maps and the Bounding
Boxes. All values are given in percent. The x-axis represents
the coded class names.

The bar chart shows that the explanations of LIME (orange)
and Class Activation Maps (green) are predominantly in
a similar proportion in the bounding boxes. High values
for the explanations in combination with a high accuracy
(blue) exclude a bias. A high accuracy in combination with
low values for the explanations could indicate a bias in the
training data. The values of class n04264628 stand out in the
diagram due to very low values in the explanations. The
accuracy for this class also performs worse than others. A
closer examination revealed that this is the class space bar.
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Fig. 2: Average intersections in percent compared to accuracy per class

Figure 3 below illustrates the visual analysis of this class
for the first image. The complete output can be viewed in
more detail in the Jupyter Notebook [27]. In this edition the
background for LIME explanations has not been greyed out
for technical reasons.

6 CONCLUSION

In recent years, the use of machine learning methods has
risen sharply and has become an integral part of everyday
life. Increasingly complex algorithms are being developed
in order to offer the best possible solutions. With increasing
complexity, the interpretability of these machine learning
algorithms becomes more and more difficult. However, the
interpretability of the models and their results is important
for their comprehensibility and thus their acceptance.
Therefore, it is necessary to achieve the highest possible
degree of interpretability in machine learning processes.

With this motivation, the present work aimed at presenting
the mechanisms and procedures of the emerging field
”interpretable machine learning” and to investigate them.
The necessity of interpretability from a commercial, legal
and sociological point of view was explained. Subsequently,
the two approaches of interpreting machine learning were
examined.

In the first part of the thesis, the most common intrinsically
interpretable machine learning methods, such as linear
regression, logistic regression or Naive Bayes, were
examined. The analysis revealed the basic functioning of
intrinsically interpretable machine learning methods. The
focus was on the interpretation of the model parameters
and their mutual influence.

In the second part of the paper, established model
agnostic and model-specific post-hoc interpretation
methods were presented and examined with regard to

their functionality, properties and boundary conditions.
Finally, their applicability was demonstrated by means of a
hypothetical use case. In this use case, the neural network
InceptionV3, which is intended for the classification of
images, was examined with regard to its model outputs
in order to identify optimization potentials and possible
bias in the training data. By a systematic application of the
post-hoc interpretation methods LIME and Class Activation
Maps deficits in the training data could be determined.

However, for many post-hoc interpretation methods
there is still a high degree of optimization potential, since
many developers of these methods are not aware of the
industrial applications. However, these will become better
and better with increasing use. One challenge is the lack
of standards and best practices. By the decree of the
article 22 of the GDPR, also called ”right to explanation”
many developers and large companies like Microsoft or
Oracle have started to develop interpretation methods for
black box models. Many try to set or enforce a standard.
Therefore, the post-hoc interpretation method SHAP
offers a good approach, since the post-hoc interpretation
methods of this library share the same basis and provide
explanations based on Shapley values. However, it is clear
that the current approaches, including SHAP, are relatively
time-consuming and require a high level of background
knowledge. Therefore, an automation mechanism is needed
for the targeted and systematic generation of explanations.
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Fig. 3: Identified weaknesses of InceptionV3
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