
Technologie-Sprint ABI compliance
Titel: ABI Checking for essential Libraries

Start: 10/2021

Ende: 10/2021

Verantwortlicher Projektpartner: ES

Beteiligte Standorte: ES, UL

Beteiligte Nutzer:innen/Arbeitsgruppen:

Status: finished

Abstract: Software packages including their libraries on HPC Systems are in
part provided by the OS’ distribution (such as the Linux kernel or libc), in
part by the HPC suppliers (such as network-stack libraries like libmxm and
libslurm) or are compiled by the HPC centers themselves (such as Open MPI).
For stability of the system as a whole, it is of utmost importance, that SW
libraries’ Application Binary Interface (ABI) do not change unnoticed. This TS
evaluates the basics of ABI changes, semantic versioning as a means to signal
breaking changes, and the tool ABI compliance checker.

Vorarbeiten:

Prior Art: Various libraries adhere to semantic versioning, requiring trust in its
correctness

Relevanz: Security advisories may require urgent replacement of important
libraries (like libslurm), leading to follow-up issues e.g. due to ABI changes.

Ergebnis: Successful

Empfehlungen: ABI compliance checker should be used

Zusätzliche Dokumentationen: Wiki entry on ABI compliance checker

Aufwand in Personentagen: 10

Long version: See below

Introduction
Compiled software packages provide binaries in the form of executables and
libraries, which other software may rely on. The foundation programmers use is
the Application Programmer Interface (API), which the compiler and linker bind
to – and which are encoded in the functional relation caller, caller’s version, callee
and callee version, compiler-settings. The software packages on HPC systems
is provided by various entities: 1. the OS’ distribution, e.g. RedHat Enterprise
Linux (RHEL), providing the bulk of the software such as the Linux kernel or

1

the GNU libc library. 2. the HPC vendor and suppliers, e.g. Mellanox/NVIDIA
providing network stack libraries like libmxm or SchedMD providing the scheduler
library libslurm. 3. the HPC centers providing specific implementations and
newer versions of Software adapted to the requirements of their HPC users.
Examples are Open MPI adapted to provide communication with CUDA-enabled
applications computing on NVIDIA GPUs.

This TS will cover the underlying problem with ABIs changing over time, the
issue exemplified based on Open MPI and SLURM and will propose a solution
based on the package ABI compliance checker.

ABI issues
Together with the underlying processor architecture (e.g. AMD64, now known as
x86-64) and operating system’s conventions plus the compiler’s definitions and
settings, the software defines an Application Binary Interface (ABI). While the
ABI of the underlying hardware and libraries provided by the OS’ distribution
must not change incompatibly, the ABI of other compiled software may change
over time, i.e. from one software’s version to another installed one. Consider a
library libx which provides two visible functions in version 1.0.0 of the library:

// from the project's configuration header
#ifdef HAVE_ATTRIBUTE_VISIBILITY
define x_visible __attribute__(__visibility__("default"))
#else
define x_visible // empty, not visibility attribute,
#endif
// From the project's header file x.h
enum enum1 {

ENUM_VAL1 = 0,
ENUM_VAL2,

}
int func1(int param1, enum1 e) x_visible;

struct visible {
char c_val; // on x86-64, compiler must include 7 Bytes padding
double d_val;

}
struct opaque;
int func2(struct visible * s1, struct opaque * s2) x_visibile;

Examples of incompatible ABI changes are: 1. Remove a function previously
visible and available, e.g. eliminating above func2 or removing a visibility (see
above __attribute__(__visibility__("default")) for GNU compiler) on
this functions declaration – which may happen inadvertantly upon installation
if the configure’s/cmake’s magic fails to detect HAVE_ATTRIBUTE_VISIBIILITY
(albeit this should then have all symbols exported), 2. Changing an existing

2

user-exposed enum by deleting entries or changing values, e.g. setting ENUM_VAL1
to start at 1, 3. Changing return types or the set return values of functions, 4.
Changing the types or the order of fields of a user-visible struct, e.g. reducing the
width of double d_val to a float type or adding another entry. 5. Compiling
using non-standard parameter passing (e.g. GNU’s -mregparam, -msseregparam
or -freg-struct-return) or for another ABI (GNU/Linux -x32)

It is good practice to denote changes using semantic versioning (see below) –
and to first mark functions and globally visible variables to be deleted in future
using e.g. __attribute__((__deprecated__("to be deleted in v2.0"))).

Adding new functions, new types or adding new entries to the end of existing
enums, adding new fields to existing opaque structs will not change the ABI.
Furthermore any changes in invisible, un-exported parts of the compiled library
will also not change the ABI to the caller if default settings of the software
package are not affected1.

Examples of incompatible ABI changes with MPI
The MPI standard and it’s main implementations based on Open MPI and
MPIch are good examples to show the intricacies. Both implementations use Se-
mantic Versioning as described below. The MPI standard mostly defines opaque
types, however there’s one user-visible datatype called MPI_Status as structure,
which at least must provide the fields status.MPI_STATUS, status.MPI_TAG and
status.MPI_ERROR. Both MPI implementations however define further entries,
which the user should not rely on, as they may change over time. With regard
to opaque types like MPI_Communicator MPIch defines them as an integer type,
while Open MPI defines opaque pointers to opaque structs. The MPI API and
their implementation’s ABI are rather stable towards the calling MPI-application.
Problems however may arise in the interaction of the MPI implementation’s
runtime (in case of Open MPI the ORTE/prrte component and PMIx) with
the scheduler on this Cluster: if libslurm.so changes incompatibly, starting
MPI-jobs may fail. To a lesser extent other components (in case of Open MPI
the so-called modular component architecture, mca) may be affected, such as
libraries used by MPI to call into vendor’s binary libraries such as Melanox’
libmxm.so or libhcoll.so for hierarchical collectives being part of HPC-X.

Semantic Versioning
Semantic versioning is a concept to define version numbers in a 3-level scheme
(MAJOR.MINOR.PATCH declaring a public API for this version), several rules
on how changes are reflected and the relevant numbers are chosen. A project
must declare, which level will denote incompatible ABI change of the public API,
i.e. whether MAJOR or MINOR level will denote an incompatible change. Then
PATCH denotes versions with only bug-fixes and backward compatible changes.

1The KDE project provides best-practices for C++ programmers: KDE Binary Compati-
bility Examples

3

https://www.open-mpi.org
https://www.mpich.org
https://semver.org
https://community.kde.org/Policies/Binary_Compatibility_Examples
https://community.kde.org/Policies/Binary_Compatibility_Examples

The library libx of version 1.0.2 may savely replace the version 1.0.0, while
version 2.0.0 would include binary incompatible changes, any user (be it applica-
tion or library) would need to be re-compiled (and possibly amended in case of
missing or deprecated functions).

On Unix systems this version is then encoded in the libraries file name and
must represent the above-mentioned semantic version. Applications linked
against a specific version of any library would then not be able to run against
another incompatible version. The following output of ldd shows six of the
43 dependencies of an exemplary MPI application compiled and linked against
Open MPI-4.1.1:

linux-vdso.so.1 (0x00007ffc64bc1000)
libmpi.so.40 => /opt/bwhpc/common/mpi/openmpi/ *newline added*

4.1.1-gnu-11.1/lib/libmpi.so.40 (0x00001515c38e3000)
libpthread.so.0 => /usr/lib64/libpthread.so.0 (0x00001515c36c3000)
libc.so.6 => /usr/lib64/libc.so.6 (0x00001515c3301000)
liblustreapi.so.1 => /lib64/liblustreapi.so.1 (0x00001515c30cf000)
libslurm_pmi.so => /usr/lib64/slurm/libslurm_pmi.so

As may be seen, the libraries are from software packages provided by all above
mentioned entities, many but not all of them use semantic versions encoded
into the library-name. For example libc.so.6 points to the implementation
libc-2.24.so. Another entry libslurm_pmi.so is unversioned as such and
rather uses /usr/lib64/libslurm.so which currently points to implementation
libslurm.so.36.0.0.

Upon updating Slurm it is important to ensure, that libraries will not have
incompatibly changed it’s ABI.

ABI compliance checker
As the name suggests ABI compliance checker tests for incompatible ABI changes
based on dumps generated by a sister project ABI dumper, resulting in a concise
HTML-based report.

The tool may work on the actual underlying source or on the compiled binary,
based on the debugging information. Therefore compilation with CFLAGS="-Og
-g" is recommended.

Requirements are abi-dumper.pl and abi-compliance-checker.pl2.

Generating a dump of a library such as Open MPI, run: V=4.1.1 abi-dumper.pl
-vnum ${V} -o openmpi-${V}.dump PATH_TO_OMPI-${V}/lib/libmpi.so

Comparing an old version, such as OLD_VERSION=4.0.6, run: abi-compliance-checker.pl
-l openmpi -old openmpi-${OLD_VERSION}.dump -new openmpi-${V}.dump

2To install run: git clone https://github.com/lvc/abi-dumper git clone
https://github.com/lvc/abi-compliance-checker.git

4

https://lvc.github.io/abi-compliance-checker/
https://lvc.github.io/abi-dumper/

Example of report

An example report between Open MPI-3.1.6 and Open MPI-4.0.6 is shown in

the following figure: 5

This shows several changes of sizes of internal data structures and 2 removed
symbols.

Checking for compliance of Open MPI-4.1.2rc2, aka the second release candidate
compared to Open MPI-4.1.1 is provided below – and shows only one high
problem with a symbol. This turns out to be an internally used function
ompi_coll_base_bcast_intra_basic_linear.

A set of three SLURM versions was compiled: for V in 20.02.7 20.11.8
21.08.2 ; do cd slurm-${V} ; mkdir -p COMPILE; cd COMPILE ; rm
-fr * ; ../configure --prefix=$PWD/usr CFLAGS="-g -Og" | tee
configure.out && make -j72 | tee make.out && make install ; cd
../../ ; done

and then analyzed: for V in 20.02.7 20.11.8 21.08.2 ; do PATH_TO/abi-dumper.pl
-vnum ${V} -o slurm-${V}.dump slurm-${V}/COMPILE/usr/lib/libslurm.so
; done showing several symbol additions and changes. An example of a
user-visible change between slurm-20.02.7 to slurm-20.11.8 might be

Caveats

The generated difference reports are exhaustive, as may be seen above. Whether
actual damage arises from e.g. high-severity change in Slurm is not really tractable
to the common installer as a daily task. In the case of the above high-severity
symbol change, it’s a matter of usage in the caller of this function. Nevertheless,
the output is very helpful to the developer using an application, e.g. to determine
changes in the semantic versioning of one’s own sofware.

Best practices

A proposed best practice is to generate a dump with every installed library
exported to users (e.g. libmpi.so). Upon installing a newer version of the same
library, generate a ABI compliance report and check for serious errors.

For starters, the page ABI Laboratory provides generated reports, e.g. the ABI
report on Open MPI. However versions are not kept up-to-date since about a
year.

Alternative ABI checkers
icheck abicheck libabigail and the ABIgail tutorial

6

https://abi-laboratory.pro
https://abi-laboratory.pro/index.php?view=timeline&l=openmpi
https://abi-laboratory.pro/index.php?view=timeline&l=openmpi
https://packages.debian.org/sid/icheck
http://abicheck.sourceforge.net/
https://sourceware.org/libabigail/
https://developers.redhat.com/blog/2020/04/02/how-to-write-an-abi-compliance-checker-using-libabigail

Figure 1: ABI compliance checker for Open MPI, 2
7

	Technologie-Sprint ABI compliance
	Introduction
	ABI issues
	Examples of incompatible ABI changes with MPI
	Semantic Versioning
	ABI compliance checker
	Example of report
	Caveats
	Best practices

	Alternative ABI checkers

